43 research outputs found

    Application of Multivariate Adaptive Regression Splines (MARSplines) for Predicting Hansen Solubility Parameters Based on 1D and 2D Molecular Descriptors Computed from SMILES String

    Full text link
    A new method of Hansen solubility parameters (HSPs) prediction was developed by combining the multivariate adaptive regression splines (MARSplines) methodology with a simple multivariable regression involving 1D and 2D PaDEL molecular descriptors. In order to adopt the MARSplines approach to QSPR/QSAR problems, several optimization procedures were proposed and tested. The effectiveness of the obtained models was checked via standard QSPR/QSAR internal validation procedures provided by the QSARINS software and by predicting the solubility classification of polymers and drug-like solid solutes in collections of solvents. By utilizing information derived only from SMILES strings, the obtained models allow for computing all of the three Hansen solubility parameters including dispersion, polarization, and hydrogen bonding. Although several descriptors are required for proper parameters estimation, the proposed procedure is simple and straightforward and does not require a molecular geometry optimization. The obtained HSP values are highly correlated with experimental data, and their application for solving solubility problems leads to essentially the same quality as for the original parameters. Based on provided models, it is possible to characterize any solvent and liquid solute for which HSP data are unavailable

    The use of fast molecular descriptors and artificial neural networks approach in organochlorine compounds electron ionization mass spectra classification

    Get PDF
    International audienceDeveloping of theoretical tools can be very helpful for supporting new pollutant detection. Nowadays, a combination of mass spectrometry and chromatographic techniques are the most basic environmental monitoring methods. In this paper, two organ-ochlorine compound mass spectra classification systems were proposed. The classification models were developed within the framework of artificial neural networks (ANNs) and fast 1D and 2D molecular descriptor calculations. Based on the intensities of two characteristic MS peaks, namely, [M] and [M-35], two classification criterions were proposed. According to criterion I, class 1 comprises [M] signals with the intensity higher than 800 NIST units, while class 2 consists of signals with the intensity lower or equal than 800. According to criterion II, class 1 consists of [M-35] signals with the intensity higher than 100, while signals with the intensity lower or equal than 100 belong to class 2. As a result of ANNs learning stage, five models for both classification criterions were generated. The external model validation showed that all ANNs are characterized by high predicting power; however, criterion I-based ANNs are much more accurate and therefore are more suitable for analytical purposes. In order to obtain another confirmation, selected ANNs were tested against additional dataset comprising popular sunscreen agents disin-fection by-products reported in previous works

    On the origin of surfaces-dependent growth of benzoic acid crystal inferred through the droplet evaporation method

    Get PDF
    International audienceCrystal growth behavior of benzoic acid crystals on different surfaces was examined. The performed experiments documented the existence of very strong influence introduced by polar surfaces as glass, gelatin, and polyvinyl alcohol (PVA) on the growth of benzoic acid crystals. These surfaces impose strong orientation effect resulting in a dramatic reduction of number of faces seen with x-ray powder diffractions (XPRD). However, scrapping the crystal off the surface leads to a morphology that is similar to the one observed for bulk crystallization. The surfaces of low wettability (paraffin) seem to be useful for preparation of amorphous powders, even for well-crystal-lizable compounds. The performed quantum chemistry computations characterized energetic contributions to stabilization of morphology related faces. It has been demonstrated , that the dominant face (002) of benzoic acid crystal, growing on polar surfaces, is characterized by the highest densities of intermolecular interaction energies determining the highest cohesive properties among all studied faces. Additionally, the inter-layer interactions, which stand for adhesive properties, are also the strongest in the case of this face. Thus, quantum chemistry computations providing detailed description of energetic contributions can be successfully used for clarification of adhesive and cohesive nature of benzoic acids crystal faces

    Albumin-hyaluronan interactions : influence of ionic composition probed by molecular dynamics

    Get PDF
    The lubrication mechanism in synovial fluid and joints is not yet fully understood. Nevertheless, intermolecular interactions between various neutral and ionic species including large macromolecular systems and simple inorganic ions are the key to understanding the excellent lubrication performance. An important tool for characterizing the intermolecular forces and their structural consequences is molecular dynamics. Albumin is one of the major components in synovial fluid. Its electrostatic properties, including the ability to form molecular complexes, are closely related to pH, solvation, and the presence of ions. In the context of synovial fluid, it is relevant to describe the possible interactions between albumin and hyaluronate, taking into account solution composition effects. In this study, the influence of Na+, Mg2+, and Ca2+ ions on human serum albumin鈥揾yaluronan interactions were examined using molecular dynamics tools. It was established that the presence of divalent cations, and especially Ca2+, contributes mostly to the increase of the affinity between hyaluronan and albumin, which is associated with charge compensation in negatively charged hyaluronan and albumin. Furthermore, the most probable binding sites were structurally and energetically characterized. The indicated moieties exhibit a locally positive charge which enables hyaluronate binding (direct and water mediated)

    Collagen Type II—Chitosan Interactions as Dependent on Hydroxylation and Acetylation Inferred from Molecular Dynamics Simulations

    No full text
    Chitosan–collagen blends have been widely applied in tissue engineering, joints diseases treatment, and many other biomedical fields. Understanding the affinity between chitosan and collagen type II is particularly relevant in the context of mechanical properties modulation, which is closely associated with designing biomaterials suitable for cartilage and synovial fluid regeneration. However, many structural features influence chitosan’s affinity for collagen. One of the most important ones is the deacetylation degree (DD) in chitosan and the hydroxylation degree (HD) of proline (PRO) moieties in collagen. In this paper, combinations of both factors were analyzed using a very efficient molecular dynamics approach. It was found that DD and HD modifications significantly affect the structural features of the complex related to considered types of interactions, namely hydrogen bonds, hydrophobic, and ionic contacts. In the case of hydrogen bonds both direct and indirect (water bridges) contacts were examined. In case of the most collagen analogues, a very good correlation between binding free energy and DD was observed

    Application 2D Descriptors and Artificial Neural Networks for Beta-Glucosidase Inhibitors Screening

    No full text
    Beta-glucosidase inhibitors play important medical and biological roles. In this study, simple two-variable artificial neural network (ANN) classification models were developed for beta-glucosidase inhibitors screening. All bioassay data were obtained from the ChEMBL database. The classifiers were generated using 2D molecular descriptors and the data miner tool available in the STATISTICA package (STATISTICA Automated Neural Networks, SANN). In order to evaluate the models’ accuracy and select the best classifiers among automatically generated SANNs, the Matthews correlation coefficient (MCC) was used. The application of the combination of maxHBint3 and SpMax8_Bhs descriptors leads to the highest predicting abilities of SANNs, as evidenced by the averaged test set prediction results (MCC = 0.748) calculated for ten different dataset splits. Additionally, the models were analyzed employing receiver operating characteristics (ROC) and cumulative gain charts. The thirteen final classifiers obtained as a result of the model development procedure were applied for a natural compounds collection available in the BIOFACQUIM database. As a result of this beta-glucosidase inhibitors screening, eight compounds were univocally classified as active by all SANNs

    Molecular dynamics simulations of the affinity of chitin and chitosan for collagen: the effect of pH and the presence of sodium and calcium cations

    No full text
    Chitosan and chitin are promising biopolymers used in many areas including biomedical applications, such as tissue engineering and viscosupplementation. Chitosan shares similar properties with hyaluronan, a natural component of synovial fluid, making it a good candidate for joint disease treatment. The structural and energetic consequences of intermolecular interactions are crucial for understanding the biolubrication phenomenon and other important biomedical features. However, the properties of biopolymers, including their complexation abilities, are influenced by the nature of the aqueous medium with which they interact. In this study, we employed molecular dynamics simulations to describe the effect of pH and the presence of sodium and calcium cations on the stability of molecular complexes formed by collagen type II with chitin and chitosan oligosaccharides. Based on Gibbs free energy of binding, all considered complexes are thermodynamically stable over the entire pH range. The affinity between chitosan oligosaccharide and collagen is highly influenced by pH, while oligomeric chitin shows no pH-dependent effect on the stability of molecular assemblies with collagen. On the other hand, the presence of sodium and calcium cations has a negligible effect on the affinity of chitin and chitosan for collagen.</p

    Intermolecular Interactions as a Measure of Dapsone Solubility in Neat Solvents and Binary Solvent Mixtures

    No full text
    Dapsone is an effective antibacterial drug used to treat a variety of conditions. However, the aqueous solubility of this drug is limited, as is its permeability. This study expands the available solubility data pool for dapsone by measuring its solubility in several pure organic solvents: N-methyl-2-pyrrolidone (CAS: 872-50-4), dimethyl sulfoxide (CAS: 67-68-5), 4-formylmorpholine (CAS: 4394-85-8), tetraethylene pentamine (CAS: 112-57-2), and diethylene glycol bis(3-aminopropyl) ether (CAS: 4246-51-9). Furthermore, the study proposes the use of intermolecular interactions as molecular descriptors to predict the solubility of dapsone in neat solvents and binary mixtures using machine learning models. An ensemble of regressors was used, including support vector machines, random forests, gradient boosting, and neural networks. Affinities of dapsone to solvent molecules were calculated using COSMO-RS and used as input for model training. Due to the polymorphic nature of dapsone, fusion data are not available, which prohibits the direct use of COSMO-RS for solubility calculations. Therefore, a consonance solvent approach was tested, which allows an indirect estimation of the fusion properties. Unfortunately, the resulting accuracy is unsatisfactory. In contrast, the developed regressors showed high predictive potential. This work documents that intermolecular interactions characterized by solute鈥搒olvent contacts can be considered valuable molecular descriptors for solubility modeling and that the wealth of encoded information is sufficient for solubility predictions for new systems, including those for which experimental measurements of thermodynamic properties are unavailable.</p

    On the origin of surface imposed anisotropic growth of salicylic and acetylsalicylic acids crystals during droplet evaporation

    Get PDF
    International audienceIn this paper droplet evaporative crystallization of salicylic acid (SA) and acetylsalicylic acid (ASA) crystals on different surfaces, such as glass, polyvinyl alcohol (PVA), and paraffin was studied. The obtained crystals were analyzed using powder X-ray diffraction (PXRD) technique. In order to better understand the effect of the surface on evaporative crystallization, crystals deposited on glass were scraped off. Moreover, evaporative crystallization of a large volume of solution was performed. As we found, paraffin which is non-polar surface promotes formation of crystals morphologically similar to those obtained via bulk evaporative crystalli-zation. On the other hand, when crystallization is carried out on the polar surfaces (glass and PVA), there is a significant orientation effect. This phenomenon is manifested by the reduction of the number of peaks in PXRD spectrum recorded for deposited on the surface crystals. Noteworthy, reduction of PXRD signals is not observed for powder samples obtained after scraping crystals off the glass. In order to explain the mechanism of carboxylic crystals growth on the polar surfaces , quantum-chemical computations were performed. It has been found that crystal faces of the strongest orientation effect can be characterized by the highest surface densities of intermolecular interactions energy (IIE). In case of SA and ASA crystals formed on the polar surfaces the most dominant faces are characterized by the highest adhesive and cohesive properties. This suggests that the selection rules of the orientation effect comes directly from surface IIE densities
    corecore